
REVAS V2
Z80/8080 DISASSEMBLER

USER'S MANUAL

Copyright (c) 1978
A. E. HAWLEY

LOS ANGELES, CALIF.

INTRODUCTION

*** REVAS ***
REVERSE ASSEMBLER FOR Z80 OBJECT CODE PROGRAMS

REVAS is an interactive reverse assembler (disassembler)
designed to translate Z80 or 8080 machine language code into
an assembly-like listing. It is written in Z80 code and can
be used in any system that uses a Z80 central processor. It
supports a punch and line printer as well as a CRT or TTY.

With 22 commands, REVAS can help you:
**Analyse undocumented programs
**Document your machine language patches
**Document your special I/O routines
**Debug developmental programs
**Modify and relocate your software

Here are some of REVAS' features:
**Assembly format listings
**Output suitable for reassembly
**Generates synthetic labels
**Accepts your choice of real labels
**Prints tables in data format
**Displays alphanumeric equivalents

of the machine code
**Displays symbol table at any time
**Cross reference listing shows where and how each

symbol is used
**Up to 3 output devices can be used
**You are always in complete control of the
disassembly process..stop and restart, return to
monitor, or return to command mode at will

INTRODUCTION Page 2

The instruction mnemonics produced by REVAS are the same
as those used by the Technical Design Labs' Z-80 Relocating
Macro Assembler, and by Intel for the 8080.

The remainder of this manual shows you how to make REVAS
work for you.

The 'A LITTLE INSIGHT' section introduces the general
algorithm by which REVAS performs a disassembly. The use of
tables is explained and related to the commands that use
these tables. You will need to understand this subject in
order to make most effective use of the REVAS capabilities.
In particular, the two most - frequently used commands are
introduced in that section.

In the 'REVAS COMMANDS' section, you will find a
detailed description of the syntax and operation of each
command. Until you become thoroughly familiar with the
command set, you will have frequent use for this section. A
careful reading of the formal command descriptions will
reveal the freedom of format that is designed into these
commands. A list of REVAS COMMANDS appears on the back cover
for ready reference.

The IMPLEMENTATION section contains the information you
need to load REVAS into your system and properly interface
to your I/O devices. The I/O jump vectors are explained
there, as well as the register usage associated with I/O.
Some of the addresses and their functions within REVAS are
"given to permit minor changes to be made in output format if
you wish.

Read the manual clear through before trying to operate
REVAS, then refer to it frequently. Then go ahead and
disassemble something!

One caution!
Think carefully before you use the 'A' command or the

'G' command. They can cause a system crash; the 'A' command
by assigning tables in a program area, and the 'G' command

by calling an address that is not the subroutine you
intended. You have control of such situations because you
are the one who specifies the address for these commands.

It is my intent to furnish software and documentation
that is as useful and free of errors as possible. The REVAS
program has been in constant use during its own
development(!) and for many months by several users before
the first version was released. All known bugs have been
exterminated. I am interested in improving wherever possible

INTRODUCTION Page 3

the quality of the program and its documentation. Thus, I
will welcome and respond to comments and recommendations
sent to the address below. (accolades are also welcome 1)
Please include a stamped self-addressed envelope if you wish
a reply.

Al Hawley
6032 Chariton Ave
Los Angeles, CA

90056

A LITTLE INSIGHT Page 4

HOW THE DISASSEMBLER WORKS
Here is a brief description of REVAS:
Program size— 4k bytes .
Symbol table location—end of REVAS or as assigned
Symbol table usage—

synthetic symbols 4 bytes/symbol
assigned labels 6 bytes/label

Symbol table length is initially zero, increasing as
required to accomodate symbols and up to 682 labels.

The object program to be disassembled must be in memory
at it's normal location. When control is passed to REVAS,
the prompt character(#) will appear and you may respond with
one of the commands described in the next section. Let's
start with the ' D' (display disassembly) command:

REVAS will examine the byte located at the start address
and analyse it as the first byte of an instruction by
finding it in internal lookup tables. The operator mnemonic
is obtained from the tables, as well as the number of bytes
in the current instruction.
< . The operand field contents, if any, are next determined
by a combination of logical operations and table lookup.

The operator and operand are stored in appropriate
fields of the line buffer(LB).

1 ' _ * * j -J { — t i »; Nextjf'the addresstof the instruction anci the object code
are stored in_the LB as hex characters, and the object code
is converted and placed in the comment field of the buffer
for printout as ASCII data.

The symbol tables are searched for a label assigned to
the address just defined.- If a label is found, it is
inserted in the label field of the line buffer. If there is
no label, then the tables are searched for a synthetic label
to insert. If ' none exists, then the field is left blank.
Labels can be right or left justified (see Patch Locations
below).

Now the contents of LB are printed on the output
devices, the console is checked for any pending commands,
and the process is repeated until terminated by reaching the
last address or by a command from the console.

The symbol tables comprise two tables: an index table
and a label table. The index table is constructed during
execution of the 'B* command. It contains the hex value of
each 16 bit argument encountered in the address ranges that

A LITTLE INSIGHT Page 5

have been disassembled. It also contains flags which
indicate for each entry the presence of an assigned label,
the mode of the label (instruction mode or table mode), and
a pointer to the location of the assigned label in the
second (label)table. The ' K' command deletes entries from
the index. The 'M' command changes the flag which indicates
label mode. The ' F' command adds it's argument to the index
table if it is not already there.

The label table (assigned labels) is constructed during
execution of the 'L','S', or 'T' commands. When one of these
commands is given, the label specified in the command is
added to the label table. The index table is then searched
for the corresponding hex value (address of the label in the
object program) and a pointer is entered in the index table
that points to the label entry. If there is no corresponding
entry in the index table, then one is created. Thus, these
commands also act to build the index table. The * S' command
resets a flag to indicate that this label belongs to an
instruction. The 1 T1 command sets the flag to indicate that
this label belongs to a byte in a table of data. The 'L'
command leaves the mode flag unchanged.

A description of the flag and pointer words for the
symbol tables is included in the implementation section. If
you choose to store the tables (on tape or disc, for
example) for future use, then you must be sure to also
record these locations and restore them when you restore the
tables.

Mode, Mode Character, and Mode Control
The character immediately following the ' D* or ' B' in

those commands is .the mode character. Two modes are
possible: instruction mode and table mode. Table mode is
specified if the " mode character is a 'T' ; any other
specifies instruction mode. — - • . A

In the instruction r-mode, bytes from the object program
are interpreted as Z-80 and 8080 instructions. -- -

In the table mode, bytes from the object program are
interpreted as single-byte constants which are part of a
table of data. • - .

There are two flags associated with mode control. The
mode control flag is set (or reset) by the mode control
character when the ' D' or ' B' command is issued to REVAS.
The second flag, the mode bit, is part of the data stored
for each entry in the index table. The mode bit is set or
reset during execution of the 'B','M','S',and * T* commands.
The function of the ' M' command is to define the state of

A LITTLE INSIGHT Page 6

the mode bit for a particular (address) entry in the index
table, creating a dummy entry if none is present when the
command is given.

' Operation of the ' D' Command
•"* • i * , * ' Z

The 1 D* command displays the disassembly on the selected
output device(s) , using the mode control flag to determine
the format of the output.

***If an index table entry matching the current
instruction or data byte address is encountered, then the
mode bit from that table-entry replaces the mode control
flag; the output format (or mode) is controlled for this and
subsequent bytes by this new mode control flag.***

Clearly, when the index table is empty (at the start of
a session or after the 'I' command) all output format is
specified by the mode control character. After any of the
table building commands (B,L,M,S,T) have been executed, mode
information from the index table entries will be used as
appropriate."

Operation of the ' B* Command
The ' B' command functions much like the ' D' command. One

difference is in^the use pf the mod$ fla^s.
***When,_ during disassembly, an index table entry is

found which matches the current instruction or byte address,
the mode bit of the entry is changed to correspond with that
specified by the current mode control flag.***

Another difference is the table building function. When
a 16 bit argument is found in the current operand field, it
is replaced by a synthetic symbol formed by the
concatenation of an ' S*. or 1 T* and the hex representation of
the argument. The first letter will be an * S' if there is no
index table entry. It will be either ' S* or *T* (depending
on the state of the mode bit) when an entry already exists.
If this is the first occurence of the argument value, then
an entry is created in the index table whose mode bit
specifies instruction mode (*S*). Later, when tables of data
are being disassembled with the * BT* command, those
arguments in the index table that refer to labels in the
object-program table area will have their mode bits changed
to specify table ('T') mode. Incidentally, the index table
itself can be listed using the 'DT' command.

Note that if a table of data in (the object program is

A LITTLE INSIGHT Page 7

disassembled using the ' B? * (? not a 'T') command, many
spurious arguments will be generated and stored in the index
table with curious effects during later listing. For
example, the hex code sequence 20 20...(ASCII blanks) would
be interpreted as a relative jump from the Z-80 instruction
set, and the destination of the jump would be stored in the
index as the current address plus 20H. similar situations
exist for code sequences that look like LXI, SHLD, LDA,
etc., from the 8080/Z-80 instruction sets.

Because of the above considerations, it is usually best
to analyse object code initially with the 'D* command,
reserving the use of the ' B' command until the instruction
and table areas have been located. Then the ' B' command can
be used to build tables .(and assign synthetic symbols),
first to the instruction areas, and then to the tables of
data.

COMMAND DESCRIPTIONS
Syntax

Page 8

Command Syntax

Portions of a command are separated by a delimiter in
most cases. The delimiter is represented in . the command
descriptions by ' %', which implies either comma or space.

Numeric values (addresses or symbol values, for example)
are expected to be in hexadecimal notation. When entering
the hex number, as many hex characters as desired may be
entered; only the last four will be used by REVAS. If you
type the wrong number,, simply retype it without intervening
keyboard entries.

If a non-hex character, is entered then REVAS simply
returns to the command mode and you may re-enter the command
or change to another command. It's a good way to escape a
command sequence when you change your mind..

Spaces in the formal command descriptions are present
for clarity of presentation only; they are not a part of the
keyboard input.

REVAS accepts commands in either upper or lower case.
Upper case is used in the command descriptions only for
clarity.

Definition Syntax

/../ Text enclosed by slashes is typed by REVAS. Other
parts of the commands are typed by the user.

A (up-arrow") means "depress the ctrl key and keep it
depressed while typing the next character".

+ n The logical "inclusive-or" function, "a+b+c" means
one or more of the parameters listed".

I The logical "exclusive-or" function. na!b!c" means
one and only one of the parameters listed".

COMMAND DESCRIPTIONS
Syntax

Page 9

% Means "enter a space or comma from the console
keyboard". I.e., %=<space>!<comma>

@ Means "enter a carriage return by depressing the
console keyboard return key".

<..> Text enclosed by "<" and ">" is a symbolic
representation of a keyboard entry. The actual entry,
if not self evident, is explained in the command
description.

[..] The expression(s) enclosed by square brackets may
be included in or excluded from the command at the
user's option. The command processor in REVAS will
recognize the intent of the command either way.
Furthermore, the brackets also imply that the
contents may be repeated an indefinite number of
times. -

Means "Enter any printable character". A space is
considered a printable character.

(..) Parentheses are used to group elements of a command
in the. command, descriptions to avoid,, ambiguity off
interpretation. The' parentheses are not 'p^rt of the
actual command.

COMMAND DESCRIPTIONS
Immediate Commands

Page 10

Immediate Commands

The next three commands may be used at any time during a
disassembly activity (even when printout has been
suppressed).

• R
Return to command mode. This command causes an abort
of the current listing and an immediate return to the
command mode. The prompt character will be printed
and a new command sequence is expected.

Suspend printout at the end of this line. This
command causes the disassembly to pause at the end of
the current line. Escape from this pause (or wait)
state is via any keyboard entry.

The next command may be used at any time:
AC 4 *

(control/C) this command causes an immediate trap to
the monitor. It may be used at any time during the
disassembly or command phases. If you are using a
monitor from Technical Design Labs, then a return via
the monitor ' G' command without an argument will
result in resumption of the interupted activity if
none of the registers has been changed. Note that if
AC is executed during the pause after the 'S*
command, return will be to the pause state and a
keyboard entry will be needed to continue the
disassembly.

COMMAND DESCRIPTIONS
Display & Analysis Page 11

Disassembly Display & Analysis Commands

/#/ D? /addr range=/ <start addr> % <end addr> @
•D1 means "display the object code as mnemonic
assembly instructions". This command results in
disassembly of the object code specified by the start
and end addresses.

If the <?> character is a 'T* then the object code is
interpreted as data tables and printed in .BYTE
format. When mode information is encountered in the
Index table, that mode automatically takes precedence
and subsequent printout is controlled by the flag in
the Index table.

If the character following the 'D' or 'DT' is a HEX
digit then the prompt message (ADDR RANGE=) is
suppressed, and you may continue with the address
entries. Any other character in this position causes
printing of the prompt message.

/#/ F [?]%<arg>/addr range=/ <start addr>%<end addr>@
Find all statements in the address range specified
that reference <arg> as a 16 bit number. These would
be calls, jumps, LXI statements, etc. Each such
statement is j printed ,out ii? the ̂ normal disassembly

i format. The starting 'address''must • be~ the start of an
instruction to avoid an initial phase problem and an
inaccurate disassembly. This instruction loads the
HEX number into the index table before starting its
search, so the command may be used even before tables
have been built. You can remove the number from the
tables later on with the 'K' command if you wish. You
could use this command to find all the locations in
the object program that call a particular subroutine.

/#/ P 6
Print out the symbol table. Only those symbols (and
their addresses) to which you have assigned a name
will be printed. Synthetic symbols are not printed,
since their addresses are part of the symbol.

COMMAND DESCRIPTIONS
Display & Analysis

Page 12

/#/ X /addr range=/ <start addr> % <end addr> @1%
/sym val range=/ <first addr> % <last addr> @

This command searches repeatedly through the address
range specified, printing out those instructions that
reference symbols whose addresses are in the range of
addresses requested by /sym val range/. The
instructions that reference the smallest address
value are listed first; then the next value is used;
the process is repeated for each value in the range.
This command uses the information in the symbol
tables, so it will only be useful after the symbol
address values have been entered by the B,L,S, or T
commands.

EXAMPLE: /#/XADDR RANGE=100 51E SYM VAL RANGE=100 115

COMMAND DESCRIPTIONS
Symbol Control

Page 13

Index & Symbol Table Control Commands

/#/ B? /addr range=/ <start addr> , <end addr> @
The form of this command is exactly the same as that
of the 'D' command. You may avoid the prompt message
the same way.
'B' means 'build the Index table'. When the
instruction mode is specified (B? is anything except
BT), each 2-byte argument encountered during the
disassembly is assigned a synthetic symbol name which
is the hex value preceeded by 'S'. This synthetic
symbol is placed in the label field of the listing
when the corresponding address is encountered in the
disassembly. When the table mode is specified (BT)
the object code is listed in ".BYTE" format as data.
The mode of any labels encountered is changed to 'T'
and the synthetic symbol prefix is changed from 'S'
to 'T*. When building tables, the 'B?' command should
be used until the instruction code sequences have
been disassembled. Then use the BT command to
identify the table area labels. This will avoid the
need to re-build tables for some areas of the object
program. Note that there is no problem with using
this command repeatedly on the same or overlapping
address ranges. Symbols already entered are retained;
only the mode flag associated with the symbol is
affected.

/#/ L [%] <address> / =/ <alpha string> @!%
Create a label in the symbol table. The alpha string
specifies the label name. If more than 6 characters
are typed, only the first 6 will be stored and used,
the mode flag is not affected.

/#/ S [%] <address> / =/ <alpha string> @!%
Same as 'L', except mode flag is reset to indicate
that this is an instruction.

COMMAND DESCRIPTIONS
Symbol Control

Page 14

/#/ T [%] <address> / =/ <alpha string> @I %
Same as 'L', except mode flag is set to indicate that
this is a label for data.
L,S, and T may be used to replace a label and change
its mode as often as required. These commands may be
used even before the symbol tables have been built
with the 'B' command. ,

/#/ M [%] <address> % (Q ! 1) (@1%)
0 means 'the address specified is an instruction'. 1
means 'the address specified is a data byte'.
This command permits marking of data or instructions
in the program for which there is no label. It is
typically used to mark the beginning of a table of
data whose first byte is not referenced directly.
Likewise, it might be used to mark the first
instruction following a table, where no direct
reference is made (reference might be by means of a
jump table, for example).

When the delimiter (%) is used to terminate the
L,S,T, or M commands, the next prompt (£) will be on
the same line as the last one. These commands can be
'strung out' across the page using this feature.

- * _ i { /#/'K [< [%]'', <address> %?] @
Kill a symbol table entry. This command removes all
reference to the address given from the symbol
tables. It's most important use is to remove 16 bit
constants from the tables so that they will print out
during disassembly as constants (numbers) rather than
synthetic labels. You may also use 'K* to remove _
labels assigned by the L,S, and T commands.
When a delimiter is used after the address, another
address may be entered; and another, etc until a
carriage return is entered to terminate the Kill
mode. For example, "/#/K0,1,2,4,8,A00@n would result
in deletion of 0000, 0001, 0002, 0004, 0008, and OAOO
from the tables.

COMMAND DESCRIPTIONS
Immediate Commands

Page 15

Utility Commands

/#/ IAFAF
> fc

This command initializes the symbol tables by
assigning initial values to the Symbol Table Pointers
corresponding to empty tables located at the end of
REVAS. It is typically used to start a new
disassembly.

** DO NOT USE THIS COMMAND **
** IF YOU WANT TO SAVE THE SYMBOLS **
** YOU HAVE ALREADY ENTERED! **

/#/ AAFAF [%] <address> %
Assign the start of the symbol tables to the memory
address specified. The tables are moved to the new
location and the Symbol Table Pointers are adjusted
to correspond to the new table location. The Symbol
Table Pointers are the sole link between REVAS and
the tables, and their location is not changed. Copies
of REVAS at two different locations could use the
same tables if you were to copy the ST Pointers from

; : one REVAS copy to the other. Normally you would use
this command at the start of a session to place the
tables advantageously in your memory space. Tables
are built at the end of REVAS if not otherwise
assigned wit^ this•command, * - 1 • • *l i

_ NOTE
The two AF characters immediately following the * I* and 'A*
commands are included as a safety feature to prevent
inadvertant issuance of these commands. You can change these
'lockout' characters by changing the contents of two memory
locations. (see Patch Locations below) Note that the parity
bit of the second byte must be SET (=1). Thus, if you
selected 'PE' as the two (ASCII) characters, the entries
would be 50 and C5.

COMMAND DESCRIPTIONS
Immediate Commands

Page 16

/|/ O I [?1 (C1PIL) [?] %] @

The output device (s) for the disassembly listing are
determined by this command. Note that all but the CR(@)
may be committed. In that case, only the command dialog
will be printed on the console. This option is useful
when you wish to build ('B' command) tables without
wasting time with the listing.

«*

Assigns disassembly listing to the console
Assigns listing to the list device
(56 lines per page)
Lists the label, operator, and operand fields on
the punch device, (suitable for reassembly!)

Console,List,Punch
This is an acceptable command which will result in
listing on all 3 devices. Note that, for this
command, words may be substituted for the single
letters that REVAS recognizes. The first letter
should be 0,C,L, or P as implied in the example.

/#/0 C
/#/ OL

/#/0P

/#/0ut

G [?] <addr>@
This is the 'GO' command that allows you to transfer
to your own subroutine. If the subroutine terminates
with,a ' RET * t statement^ and j the Stack- pointer, b̂ as ther
same 'value as "it had at the start of your routine^
then -oreturn will be to the REVAS command processor
after your routine has done it's job. One use for
this command in my system is to run a routine that
closes a disq file after REVAS has finished writing a
disassembly listing to it.

/#/ C
Comment field control...This command switches the
comment field on and off. If the last output included
the comment field, then execution of this command
will inhibit printing of the comment field until the
command is given again. If you have already made use
of the data in the comment field, then you can
inhibit it's printout with the *C* command and
considerably increase the printout speed and get
cleaner copy in the bargain. (The printer doesn't
have to print all those spaces between the operand
field and the comment field)

COMMAND DESCRIPTIONS
Immediate Commands

Page 17

/#/ H
HALT at the top of the each page of the logical list
device. This command may be used at any time, even
while listing is in progress. Listing is resumed when
any keyboard entry is detected. If the entry is a AC,
then that function is performed first and listing
will resume immediately on return from the monitor.
By assigning the logical list device to a CRT or TV
display and setting the top margin, lines/page, and
bottom margin appropriately, the HALT function can be
used to step 'through a complete disassembly one
screen-full at a time.

/# / AH
The AH character cancels the HALT mode, resulting in
continuous paginated listing without pause at page
boundaries. This is the default mode for REVAS.

/#/ E
The 'E' command causes the '.END' Pseudo-op to be
output to the .active (assigned j by ',0') i output
devices. .' This ? Pseudo-op : »is 'I required' by most
assemblers at the end of the source listing.

/#/ AL
Control-L, the ASCII Form Feed, causes the logical
list device to space to the top of the next page. It
may be used at any time, even when the list device is
unassigned by the * 0* command.

This completes the description of the REVAS commands.
Experiment with them until their nuances become familiar to
you, and you will then get the most benefit from your REVAS
disassembler. '*

REVAS IMPLEMENTATION
Loading and I/O Considerations

Page 18

Loading REVAS From Cassette

The standard REVAS cassette is recorded in straight
Tarbell format. It starts with a 25 second sync stream that
you can use to adjust your interface. Following the sync
stream is 15 seconds of carrier, and then the first load
module. The cassette contains 3 load modules; the first
module is 1400H bytes long and is named REVAS. If you do
not have the CPM system, this is the only module of interest
to you. The second module is 400H bytes long, and is named
REVAS.COM. The third module is 1400H bytes long and is named
REVAS.LOD.

REVAS (the first module) may be loaded anywhere you wish
in memory and executed by jumping to the load address.
During first execution, the relocating code is destroyed and
the resulting copy of REVAS is no longer relocatable. Thus,
to make I/O patches to the jump vectors, the modifications
must be made to the copy immediately after loading. The
modified copy can be saved (on tape, for example, or on
disc); the relocatability feature will still be valid if you
have done no more than change the arguments of the I/O jump
vector. Once executed, REVAS is exactly 1000H bytes long.

REVAS.COM and REVAS.LOD should be loaded into memory one
at a time and saved from location 100H (the CPM tpa) using
CPM commands. More details are given in the appended
REVAS/CPM guide.

Before loading REVAS,, insert tthe cassette in. your
recorder With the interfa'ce' disconnected so you can hear the
data. Play the tape from the beginning. The first sound you
hear will be that of the sync stream, then the carrier tone.
Note the places where the steady tone of the carrier is
replaced by the 'noise' sound of the recorded data. The
programs are recorded in the order listed above, with about
15 seconds between copies. Now position the tape a few
seconds ahead of the copy you want, reconnect the Tarbell
interface, and copy the program into memory.

I/O Interface Description
REVAS is designed to support one logical input device

(the console) and 3 logical output devices (console, punch,
and printer).

The physical devices referenced by the logical names
(console, punch, and printer) are determined by your driver
routines and the jump vectors in REVAS that point to them.
You could, for example, have the punch actually write on a
disc file.

REVAS IMPLEMENTATION
Loading and I/O Considerations

Page is

All I/O transactions take place through the jump vectors
located near the beginning of the REVAS program. These
vectors are shown in the listing below. You must verify that
these jumps point to the proper driver routines in your
system. If you are using a monitor from Technical Design
Labs and it is located at OFOOOH, then no changes will be
necessary. Otherwise, you must change the jump arguments so
that they point to your own driver routines.

The driver routines must observe the following register
usage conventions:

A byte to be output is transmitted in the ' C'
register and will be in the 'C* and 'A'
registers on return from the output driver.
An input byte (from the.console) is expected
to be in the 'A' register. The content of all
other registers must be returned unchanged
during an I/O operation.

REVAS Entry & I/O Vector

ADDR CODE LABEL OPR OPA COMMENTS
0020 31 XXXX REVAS: LXI SP,STACK ;LOCATE STACK

;ADDR is the address relative to the load
;address BEFORE execution. During execution,
jLall of this cocle is moved down j20g bytes,,
;s<5~~that t:he instruction- labeled REVAS ii>
;located at relative address 0000.
;XXXX depends on Version number of REVAS

0023 C3 XXXX J MP START ;GO TO WORK
0026 C3 12F0 CSTS: JMP 0F012H ;CONSOLE STATUS

; RETURNS WITH 0FFH IN ACCUMULATOR IF THERE IS
;CONSOLE INPUT WAITING, 00 IF NOT.

REVAS IMPLEMENTATION
I/O Vectors

Page 20

0029 C3 03F0 CNSLIN: JMP 0F003H CONSOLE INPUT
002C C3 09F0 CSLOUT: JMP 0F009H CONSOLE OUTPUT
002F C3 0FF0 LPOUT: JMP 0F00FH PRINTER OUTPUT
0032 C3 0CF0 POUT: JMP 0F00CH PUNCH OUTPUT
0035 C3 1EF0 TRAP : JMP 0F01EH RETURN TO MONITOR

RETURN FROM THE MONITOR WITH ALL REGISTERS
(INCLUDING THE STACK PTR AND THE PC)
RESTORED TO THEIR STATES AT THE TIME OF THE
JUMP TO TRAP WILL PERMIT CONTINUED EXECUTION
OF REVAS WHERE IT LEFT OFF. IF YOUR MONITOR
ROUTINES DO NOT INCLUDE THIS FACILITY, THEN
RETURN SHOULD BE THROUGH A JUMP TO REVAS
(I.E. JUMP TO RELATIVE LOCATION 0000)

REVAS IMPLEMENTATION
Pointers and Patches

yage \

Symbol Table Pointers after execution

REL ADDR CONTENT DESCRIPTION
0FF5
0FF6
0FF8
OFFA
OFFC
OFFE
1 0 0 0

TFLAG: 0=EMPTY TABLE; 1=NOT EMPTY
A1: ADDR OF FIRST ENTRY OF INDEX TABLE
A3: ADDR OF LAST ENTRY OF INDEX TABLE
A4: ADDR OF FIRST ENTRY IN LABEL TABLE
A2: POINTER TO NEXT AVAILABLE LOCATION
FOR LABEL ENTRY (RELATIVE TO FIRST ENTRY)
A5: POINTER TO LAST LOCATION IN THE
LABEL TABLE RELATIVE TO THE FIRST ENTRY
DEFAULT LOCATION OF INDEX TABLE (THIS ADDR
WOULD BE IN A1i ABOVE)

Patch Locations after execution
REL ADDR CODE REMARKS

0850
0908
091C
0EA1
0EA6
0EAA
0EAF
0ECE

3B Comment Field Delimiter
AE Right Justify Label Field

EE=Left Justify Lbl Field
3A-• Label Terminator
2E 42 59 54 C5 '.BYTE* Pseudo-Op For Tables
2E 45 4E C4 '.END' Pseudo-Op
0D OA 00 80 00 CRLF For List Device
0D OA 00 80 00 CRLF For Other Devices
06 86 , jLockout bytes, AFAF * J * J »<

\ - ! 1 - - - - - - } !
 {

(To change an ASCII string such as this to some otner
string such as 1 DB', observe the following two rules:

1. You must use the same number of characters,
filling out with blanks if necessary.

2. The last Tsyte in the string must have
. _ bit 7 set. I.e., the parity bit must be equal

to one.)
0037
0038
0039
003A

38
5
5
38

LC: Line Counter
TM: Top Margin
BM: Bottom Margin
LP: Text Lines/Page

0445
0187

Immediate
52
53

command characters
R=RET to Command Mode
S=Suspend Disassembly

REVAS IMPLEMENTATION
Pointers and Patches

Page 22

Line Format Modification
The line buffer is 60 bytes long and is divided into 6

fields. The length of each field is specified in a format
list starting at 0018H. It contains 7 words, each of which
is the absolute address of the start of a field. The field
starting with the seventh address is not used. The first
address in the list is the start of the line buffer after
execution.

Format List
REL HEX SYMBOL FIELD FIELD DESCRIPTION
ADDR WORD •

0018 D40E LB 1 address field
001A D90E LB+5 2 object code
001C E50E LB+17 3 label field
00 1E ED0E LB+25 4 operator field
0020 F30E LB+31 5 operand field
0022 080F LB+52 6 comment field
0024 0D0F LB+57 defines end of field 6

Page Format Control

Page format for the list device output is controlled
_,by TM, LP, and BM. TM specifies the number of blank lines ^t
"the top of the pige, LP specifies the number of text" line's
per page, and BM specifies the number of blank lines at the
bottom of the page. Total page length is thus 'the sum of
these three constants. You can change TM or BM to any 8 bit
value, including zero. LP may be assigned any 8 bit value
except zero. These assignments are made by modifying the
appropriate patch locations.

Nulls After CRLF
The CRLF—Nulls sequence is separately specified for

the List Device and for all other output devices. (See Patch
Locations) As supplied, REVAS outputs 2 nulls after a line
feed. You can change this to from zero to three nulls by
changing the byte in the sequence . for which bit 7 is set.
For zero nulls, the sequence must be changed to
0D 8A 00 00 00; for 3 nulls change to OD OA 00 00 80.

REVAS FOR CPM

Copyright (c) 1978
A. E. Hawley

Los Angeles, California

REVAS/CPM Page 2

The CPM environment requires some changes in the command
tructure of REVAS, as well as the way in which REVAS is

implemented. The following description of new and changed
features is an appendix to the REVAS User's Manual, V2;
please refer to that manual if you are not already familiar
with it's contents.

In the CPM environment, REVAS is present as TWO files:
HEVAS.COM and REVAS.LOD. The first file, REVAS.COM, is an
executive program which manages the loading of the target
program, REVAS, and the symbol tables. This file is 4 blocks
(pages) long and runs at a location just below CPM's CCP
section. You can, if you wish, rename this file using CPM's
REN command, but it must remain a .COM file. This file name
defines the transient command used to invoke a disassembly
with REVAS. The second file, REVAS.LOD, contains the actual
REVAS program embedded in a relocating loader. It is loaded
into memory and executed by REVAS.COM, which contains a
reference by filename.ext to REVAS.LOD. Thus, the REVAS.LOD
file must not be renamed. REVAS.LOD is 20 blocks (pages)
long, (a block is 256 bytes) All files are assumed to be on
the currently selected disc.

The program to be disassembled (the target program) must
coexist with REVAS in your computer's memory space. When
REVAS is invoked, the target file is accessed and loaded at
the CPM tpa (address 100 Hex). The REVAS disassembler is
then loaded above the target pgm. If a symbol table file for
the target program exists on the disk, it is loaded at the
end of REVAS. If no symbol table file exists, then one is
automatically created. During the loading process, messages
will be typed on the console to let you know the results of
each of these steps.

REVAS always uses two files: FN.TBL, and FN.ASM. FN.TBL
is the file to which REVAS writes its symbol tables (see the
'W* command). FN.ASM is the file to which REVAS writes
assembler mnemonics for editing and/or reassembly. When
REVAS is invokfed "it searches the current disc directory for
these files. If not found, they are automatically created.
If FN is not specified in the invoking command, then FN=###
is assumed. If the .EXT. is not specified for the target
program, then EXT=COM is assumed.

A disassembly is invoked by typing a standard CPM
transient command (after the CPM prompt) of the following
form:

REVAS [ufn]
*ufn' is an unambiguous file name, as defined in your CPM
manual. Four possible forms of this command and the
resulting file names involved are shown in the table below.
In this table, 'EXT' means any file extension except 'TBL'.
'FN' stands for any file name.

REVAS/CPM Page 3

Command
REVAS

Response
REVAS is loaded
###.ASM are used.

at the tpa. I# #.TBL and

REVAS FN FN.COM is loaded at the tpa followed by
REVAS* The files FN.TBL and FN.ASM are used.

REVAS FN.EXT

REVAS FN.TBL

FN.EXT is loaded at the tpa, followed by
REVAS. The files FN.TBL and FN.ASM are used.
No target program is loaded. REVAS is loaded
at the tpa, followed by the symbol table file
FN.TBL. If FN.TBL does not exist, then it is
created. FN.ASM is used.

After the loading process is completed, control is
passed to REVAS, as indicated by display of the REVAS prompt
(#) on your console. The REVAS command set is now at your
disposal.

REVAS/CPM Special Commands
The 'A' and "I* commands described in the User's Manual

are not needed in the CPM environment, and have been deleted
in the CPM version of REVAS. The ! W' command in the CPM
version saves the current symbol tables on disk in a file
named FN.TBL. The \0' (Output channel control) command and
the ' E (. E N D pseudo-op) commands have been modified for the
CPM environment to OPEN and CLOSE the FN.ASM file. The Punch
output option is no longer implemented in REVAS/CPM, since
that utility is available through PIP.

.. M * i :: AC Control-C re-boots the CPM system;
E Inserts the pseudo-op '.END' into the output

stream and properly closes the FN.ASM file. A FN.ASM
file that is. not closed with this command will not
contain the final record with the end-of-file mark
required by the Editor.

O ' The key letter *P' has been replaced by 'A' (for
.ASM). Otherwise, the command format is unchanged from
that in the user's manual. The command 'OPEN C,A@'
results in normal disassembly output at the console and
label, opcode, and argument output to the (now open)
-ASM file. A subsequent OC command DOES NOT CLOSE THE
FN.ASM FILE. File closure MUST be accomplished with the
'E' command. - The Console and List devices ARE
deselected when their key letters are ommited from an
'O* command argument list.

K.tV/lb/l-i'M Page 4

W Write the symbol tables into the FN.TBL file. This
command opens the file, writes to it, then closes the
file. It will not execute if the FN.ASM file is
currently open, and will print a reminder to close the
.ASM file if it is open. The command may be repeated as
often as you wish during a disassembly, so you can
always have saved the latest version of the label
assignments.

A <Switch>%<Input>@ The (new) 'A' command is used for
assigning new values to the parameters listed in the
User's manual under the heading 'Patches'. The table
which follows gives the expected Input for each
<switch> value. 'HEX' means a hexadecimal value in the
range 0 to FF; 'CH' means any keyboard character,
including lower case and control characters.

FUNCTION
Number of nulls to send after a carriage
return, line feed to the list device.

Number of null to send after a carriage
return, line feed to the console or
punch devices.

Number of lines in the Top Margin of the
List device page.

Number of lines in the Bottom Margin of
. the List device page.
Number of lines of text per List page.
Right justify labels in label field.
Left justify labels in label field.
Replace *S' for the immediate command
which suspends ..printout and disassembly.

Replace41R' *£oi? t̂he ; immediatl command
which returns to REVAS command mode.

Replaces the ':' label terminator
Replaces the *; ' comment field delimiter

These characters replace the '.BYTE'
pseudo-op which defines data storage
bytes.

The 'A' command has several restrictions. Fiirst, it only
operates when no .other commands have been previously
executed. Second, "it only operates after the CPM command:

REVAS REVAS.LOD
The changes which are made by the 'A* command occur only in
the copy of REVAS.LOD which is now located at the tpa. After
all the changes have been made, the new REVAS.LOD is saved
by executing a re-boot of the CPM system (AC) and using the
CPM command:

SAVE 2 0 REVAS.LOD
REVAS, on subsequent invocation, will contain the changes.
All other commands are as described in the REVAS user's
manual.

SWITCH INPUT
0 HEX
1 HEX

2 HEX
3 HEX

4 HEX
5 AE
5 :EE
6 CH
7 CFT

8 CH
9 CH
A 1 to 4 CH

rDL Z80 RELOCATING ASSEMBLER VERSION 1.0
NORTH STAR HORIZON I/O FOR REVAS

PAG

.TITLE *NORTH STAR HORIZON I/O FOR REVAS*
;THESE ROUTINES CONVERT REVAS I/O
;FORMAT TO NORTH STAR FORMAT, LEAVING
;DOS OPERATION AS SPECIFIED BY NORTH STAR.

0002 CIBIT=02 ;CONSOLE INPUT STATUS IN BIT 1
0001 LBIT=01H ;LIST OUTPUT STATUS BIT
0001 PBIT=01H ' ;PUNCH OUTPUT STATUS BIT
0003 CSTAT=03H ;CONSOLE STATUS PORT
0009 LSTAT=09H ;LIST DEVICE STATUS PORT
0008 LDATA= 08H ;LIST DEVICE DATA PORT
000B PSTAT=0BH ;PUNCH DEVICE STATUS PORT
00OA PDATA=0AH ;PUNCH DEVICE DATA PORT
200D CHQUT=200DH -;CONSOLE OUTPUT

THE 1RXXXX' ROUTINES ARE USED BY REVAS FOR
OUTPUT AND CONSOLE STATUS TESTING. FOR INPUT,
REVAS USES THE DOS CONSOLE INPUT ROUTINE
;THE RLOUT AND RPOUT ROUTINES ARE FOR THE LIST
;AND PUNCH LOGICAL DEVICES WHICH REVAS CAN
;SPECIFY FOR OUTPUT. AS SUPPLIED, BOTH ROUTINE:
;JUMP TO THE CONSOLE FOR OUTPUT; YOU MUST
; CHANGE THEM TO FIT YOUR OWN SYSTEM PORT AND
;STATUS BIT REQUIREMENTS. IF INITIALIZATION
;IS REQUIRED, YOU MUST ADD IT TO THE INIT
;ROUTINE WHICH STARTS AT 29 25H. SPACE HAS BEEN
;LEFT THROUGH 2 9C8 FOR SUCH PATCHES.
;THE 'MOVE* ROUTINE TRANSFERS THE I/O ROUTINES
T; (RCSTS Td 'END') ̂ O LOCATION 29C9. THIS ENTIRE
;PROGRAM IS TITLED 'NSHIO' ON YOUR DISC AND CAI
;BE EXECUTED BY THE DOS COMMAND 'GO NSHIO'
; TO AUTOMATICALLY CONFIGURE THE IO FOR REVAS
;COMPATIBILITY. SINCE THE CODE IS SELF-RELOCAT?
;YOU CAN TRANSFER IT TO SOME OTHER LOCATION BY
;CHANGING THE ARGUMENT OF THE 'LXI D....' IN Tf
;MOVE ROUTINE REMEMBER, THOUGH, THAT YOU
;MUST. THEN MAKE THE SAME BIAS ADJUSTMENT IN THE
;IO JUMP VECTOR AT THE BEGINNING OF EACH COPY
;OF REVAS.

29B1

29B1
29B4
29B7
29BA
29BD
29BE
29C1
29C4
29C6
29C9

.LOC 29B1H ; FOR CONVENIENCE ONLY
;TO MAKE ASSY ADDRESSES SAME AS FINAL ONES..

21 E9E1 MOVE: LXI H,0E9E1H
22 29C9 SHLD 29C9H
CD 29C9 CALL 29C9H
11 00OF LOC: LXI D,RCSTS-LOC
19 DAD D
11 29C9 LXI D,29C9H
01 0029 LXI B,END-RCSTS
EDB0 LDIR
C3 2028 JMP 2028H
DB03 RCSTS: IN CSTAT

STORE 'POP H—PCHL'
RET WITH 'LOC' IN HL
OFFSET
HL POINTS TO RCSTS
DESTINATION
NUMBER OF BYTES
MOVE INTO PLACE
RETURN TO DOS
CHECK CONSOLE STATUS

TDL Z80 RELOCATING ASSEMBLER VERSION 1.0
NORTH STAR HORIZON I/O FOR REVAS

PAGE

29CB
29CD
29CF
29D0
29D1
29D2
29D3
29D4
29D5
29D8
29D9
2 9 DA
2 9 DC
2 9DE
29E0
29E2
29E3
29E5

29E6
29E8
29EA
2 9 EC
2 9 EE
29 EF
29F1
29F2

E602
3E00
CO
2F
C9
AF
C5
41
CD 200D
C1
C9
18F6
DB09
E601
2 OFA
79
D308
C9

1 8EA
DBOB
E601
2 OFA
79 .
D30A
C9

ANI CIBIT
MVI A,0
RNZ
CMA
RET '

RCHOUT: XRA A
PUSH B
MOV B,C
CALL CHOUT
POP B
RET

RLOUT: JMPR RCHOUT
LOUT: IN LSTAT

ANI LBIT -
JRNZ LOUT
MOV A,C
OUT LDATA
RET

RPOUT:
POUT:

;FOR 'NO INPUT WAITING'

;CHANGE TO FF FOR INPUT
;..WAITING

;CONSOLE OUTPUT

;RECOVER BC

;REPLACE WITH NOPS TO USE LOUT
;LIST DEVICE OR LINE PRINTER
;GET OUTPUT STATUS BIT
;LOOP IF NOT READY FOR OUTPUT

YOU MAY WISH TO SUBSTITUTE ROUTINES FOR
RPOUT THAT WRITE TO A MEMORY BUFFER (ONE
BYTE AT A TIME) AND THEN STORE THE OUTPUT
IN A DISC FILE WHICH YOU HAVE CREATED FOR
THIS PURPOSE

JMPR RCHOUT
IN PSTAT
ANI PBIT
JRNZ POUT
MOV A,C
OUT PDATA
RET
END= .
.END

;CHANGE TO NOPS TO USE POUT
;LOGICAL PUNCH DEVICE

TDL Z80 RELOCATING ASSEMBLER VERSION 1.0 PAGE
NORTH STAR HORIZON I/O FOR REVAS
+++++ SYMBOL TABLE +++++

CHOUT 200D
LBIT 0001
LSTAT 0009
POUT 29E8
RLOUT 29DA

CIBIT 0002
LDATA 0008
MOVE 29B1
PSTAT 000B
RPOUT 29E6

CSTAT 0003
LOC 29BA
PBIT 0001
RCHOUT 29D2

END 29F2
LOUT 29DC
PDATA 00OA
RCSTS 29C9

TDL Z80 RELOCATING ASSEMBLER VERSION 1.0 PA
NORTH STAR DOS I/O FOR REVAS

0001
0080
0080
0000
0004
0005
0002
0003
200D

29B1

29B1
29B4
29B7
29BA
29BD
29BE
29C1
29C4
29C6
29C9
29CB

.TITLE *NORTH STAR DOS I/O FOR REVAS*
;THESE ROUTINES CONVERT REVAS I/O
;FORMAT TO NORTH STAR FORMAT, LEAVING
; DOS OPERATION AS SPECIFIED BY NORTH STAR.

CIBIT
LBIT-
PBIT=
CSTAT
LSTAT
LDATA
PS TAT
PDATA
CHOUT

= 01 H
8 OH
8 OH •
= 00H
= 04H
-05H
= 02H
= 03H
= 2 0 0DH

CONSOLE INPUT STATUS IN BIT
LIST OUTPUT STATUS BIT
PUNCH OUTPUT STATUS BIT
CONSOLE STATUS PORT
LIST DEVICE STATUS PORT
LIST DEVICE DATA PORT
PUNCH DEVICE STATUS PORT
PUNCH DEVICE DATA PORT
DOS CONSOLE OUTPUT

THE 1RXXXX' ROUTINES ARE USED BY REVAS FOR
OUTPUT AND CONSOLE STATUS TESTING. FOR INPUT
REVAS USES THE DOS CONSOLE INPUT ROUTINE
THE RLOUT AND RPOUT ROUTINES ARE FOR THE LIS1
AND PUNCH LOGICAL DEVICES WHICH REVAS CAN
SPECIFY FOR OUTPUT. AS SUPPLIED, BOTH ROUTIN
JUMP TO THE CONSOLE FOR OUTPUT; YOU MUST
CHANGE THEM TO FIT YOUR OWN SYSTEM PORT AND
STATUS BIT REQUIREMENTS. IF INITIALIZATION
IS REQUIRED, YOU MUST ADD IT TO THE INIT
ROUTINE WHICH STARTS AT 2925H. SPACE HAS BEE]
LEFT THROUGH 2 9C8 FOR SUCH PATCHES.
THE 'MOVE' ROUTINE TRANSFERS THE I/O ROUTINE!
i (RCStTS TO 'E^D') TO LOCATION 29C9. THIS ENTI]
PROdfRAM IS TITLED I'NSDIO' ON YOUR DISC1 AND Ci
BE EXECUTED BY THE DOS COMMAND 'GO NSDIO'
TO AUTOMATICALLY CONFIGURE THE IO FOR REVAS
COMPATIBILITY. SINCE THE CODE IS SELF-RELOCAr
YOU CAN TRANSFER IT TO SOME OTHER LOCATION B'!
CHANGING THE ARGUMENT OF THE ' LXI D * IN '
MOVE ROUTINE REMEMBER, THOUGH, THAT YOU
MUST THEN MAKE THE SAME BIAS ADJUSTMENT IN TI
IO JUMP VECTOR AT THE BEGINNING OF EACH COPY
OF REVAS.
.LOC 29B1H ;FOR CONVENIENCE ONLY

;TO MAKE ASSY ADDRESSES SAME AS FINAL ONES..
21 E9E1 MOVE: LXI H, 0E9E1H
22 29C9 SHLD 29C9H
CD 29C9 CALL 29C9H
11 000F LOC: LXI D,RCSTS-LOC
I 9 DAD D
II 29C9 LXI D,29C9H
01 0029 LXI B,END-RCSTS
EDB0 LDIR
C3 2028 JMP 2028H
DB00 RCSTS: IN CSTAT
E601 ANI CIBIT

STORE 'POP H—PCHL"
POP RET ADDR, THEN RETURN
OFFSET IN DE
HL POINTS TO RCSTS
DESTINATION
NUMBER OF BYTES •
MOVE INTO PLACE
RETURN TO DOS
CHECK CONSOLE STATUS

TDL Z80 RELOCATING ASSEMBLER VERSION 1.0
NORTH STAR DOS I/O FOR REVAS

PAGE

29CD
29CF
29D0
29D1
29D2
29D3
29D4
29D5
29D8
29D9
2 9 DA
29DC
29DE
29E0
29E2
29E3
29E5

2̂9F1
29F2

3E00
CO
2F
C9
AF
C5
41
CD 200D
C1
C9
18F6
DB04
E680
20FA
79
D305
C9

29E6 18EA
29E8 DB02
29EA E680
29EC 20FA
29EE 79
29EF D303

C9

RCHOUT:

RLOUT:
LOUT:

RPOUT:
POUT: .

;FOR 'NO INPUT WAITING'
;CHANGE TO FF FOR INPUT
;..WAITING
;CONSOLE OUTPUT

;RECOVER BC
;REPLACE WITH NOPS TO USE LOUT
;LIST DEVICE OR LINE PRINTER
;GET OUTPUT STATUS BIT
;LOOP IF NOT READY FOR OUTPUT

MVI A,0
RNZ
CMA
RET
XRA A
PUSH B
MOV B,C
CALL CHOUT
POP B
RET
JMPR RCHOUT
IN LSTAT
ANI LBIT
JRNZ LOUT
MOV A/C "
OUT LDATA
RET
YOU MAY WISH TO SUBSTITUTE ROUTINES FOR
RPOUT THAT WRITE TO A MEMORY BUFFER (ONE
BYTE AT A TIME) AND THEN STORE THE OUTPUT
IN A DISC FILE WHICH YOU HAVE CREATED FOR
THIS PURPOSE...

JMPR RCHOUT
IN PSTAT
ANI PBIT
JRNZ POUT
MOV A,C
OUT PDATA
RET
END= .
.END

;CHANGE TO NOPS TO USE POUT
;LOGICAL PUNCH DEVICE

TDL Z80 RELOCATING ASSEMBLER VERSION 1.0
NORTH STAR DOS I/O FOR REVAS
+++++ SYMBOL TABLE +++++

CHOUT 200D
LBIT 0080
LSTAT 0004
POUT 29E8
RLOUT 29DA

CIBIT 0001
LDATA 0005
MOVE 29B1
PSTAT 0002
RPOUT 2 9E6

CSTAT 0 0 00
LOC 29BA
PBIT 0080
RCHOUT 29D2

END 29F2
LOUT 29DC
PDATA 0003
RCSTS 29C9

REVAS COMMANDS

»Ji ,'Hrtafĉii1 luaat>iLcft »€ mji.'iLJCJI LuLlm
B Build internal tables
C Control output of comment field
D Disassemble using tables if present
E Insert '.END' pseudo-op into output stream
F Find all instructions that use the given address
H Halt at top of list page
AH Don't halt at top of list page
G _ Go to a user routine and execute it
•>!• Iwifai.ala.ee. table.3 4io ttwtg^ay
K Kill table entries :
v"; V-•V • '>; , . .
L ,; Label assignment for any object program location
AL (ASCII Form Feed) advances to top of page
M Mark a location as instruction or table
0 Output device assignment
P Print the symbol table
S Symbol assignment for instructions
T Svmbol assianment for table locations
X ""Produce a cross reference listing"

Immediate Action Commands

AC Trap to monitor (and return : from TDL Monitor)
R return to command mode
S stop disassembly, wait for keybd entry

