
REVAS V2
Z80/8080 DISASSEMBLER

USER'S MANUAL

Copyright (c) 1978
A. E. HAWLEY

LOS ANGELES, CALIF.

INTRODUCTION

*** REVAS ***
REVERSE ASSEMBLER FOR Z80 OBJECT CODE PROGRAMS

REVAS is an interactive reverse assembler (disassembler)
designed to translate Z80 or 8080 machine language code into
an assembly-like listing. It is written in Z80 code and can
be used in any system that uses a Z80 central processor. It
supports a punch and line printer as well as a CRT or TTY.

With 22 commands, REVAS can help you:
**Analyse undocumented programs
**Document your machine language patches
**Document your special I/O routines
**Debug developmental programs
**Modify and relocate your software

Here are some of REVAS' features:
**Assembly format listings
**Output suitable for reassembly
**Generates synthetic labels
**Accepts your choice of real labels
**Prints tables in data format
**Displays alphanumeric equivalents

of the machine code
**Displays symbol table at any time
**Cross reference listing shows where and how each

symbol is used
**Up to 3 output devices can be used
**You are always in complete control of the
disassembly process..stop and restart, return to
monitor, or return to command mode at will

INTRODUCTION Page 2

The instruction mnemonics produced by REVAS are the same
as those used by the Technical Design Labs' Z-80 Relocating
Macro Assembler, and by Intel for the 8080.

The remainder of this manual shows you how to make REVAS
work for you.

The 'A LITTLE INSIGHT' section introduces the general
algorithm by which REVAS performs a disassembly. The use of
tables is explained and related to the commands that use
these tables. You will need to understand this subject in
order to make most effective use of the REVAS capabilities.
In particular, the two most - frequently used commands are
introduced in that section.

In the 'REVAS COMMANDS' section, you will find a
detailed description of the syntax and operation of each
command. Until you become thoroughly familiar with the
command set, you will have frequent use for this section. A
careful reading of the formal command descriptions will
reveal the freedom of format that is designed into these
commands. A list of REVAS COMMANDS appears on the back cover
for ready reference.

The IMPLEMENTATION section contains the information you
need to load REVAS into your system and properly interface
to your I/O devices. The I/O jump vectors are explained
there, as well as the register usage associated with I/O.
Some of the addresses and their functions within REVAS are
"given to permit minor changes to be made in output format if
you wish.

Read the manual clear through before trying to operate
REVAS, then refer to it frequently. Then go ahead and
disassemble something!

One caution!
Think carefully before you use the 'A' command or the

'G' command. They can cause a system crash; the 'A' command
by assigning tables in a program area, and the 'G' command

by calling an address that is not the subroutine you
intended. You have control of such situations because you
are the one who specifies the address for these commands.

It is my intent to furnish software and documentation
that is as useful and free of errors as possible. The REVAS
program has been in constant use during its own
development(!) and for many months by several users before
the first version was released. All known bugs have been
exterminated. I am interested in improving wherever possible

INTRODUCTION Page 3

the quality of the program and its documentation. Thus, I
will welcome and respond to comments and recommendations
sent to the address below. (accolades are also welcome 1)
Please include a stamped self-addressed envelope if you wish
a reply.

Al Hawley
6032 Chariton Ave
Los Angeles, CA

90056

A LITTLE INSIGHT Page 4

HOW THE DISASSEMBLER WORKS
Here is a brief description of REVAS:
Program size— 4k bytes .
Symbol table location—end of REVAS or as assigned
Symbol table usage—

synthetic symbols 4 bytes/symbol
assigned labels 6 bytes/label

Symbol table length is initially zero, increasing as
required to accomodate symbols and up to 682 labels.

The object program to be disassembled must be in memory
at it's normal location. When control is passed to REVAS,
the prompt character(#) will appear and you may respond with
one of the commands described in the next section. Let's
start with the ' D' (display disassembly) command:

REVAS will examine the byte located at the start address
and analyse it as the first byte of an instruction by
finding it in internal lookup tables. The operator mnemonic
is obtained from the tables, as well as the number of bytes
in the current instruction.
< . The operand field contents, if any, are next determined
by a combination of logical operations and table lookup.

The operator and operand are stored in appropriate
fields of the line buffer(LB).

1 ' _ * * j -J { — t i »; Nextjf'the addresstof the instruction anci the object code
are stored in_the LB as hex characters, and the object code
is converted and placed in the comment field of the buffer
for printout as ASCII data.

The symbol tables are searched for a label assigned to
the address just defined.- If a label is found, it is
inserted in the label field of the line buffer. If there is
no label, then the tables are searched for a synthetic label
to insert. If ' none exists, then the field is left blank.
Labels can be right or left justified (see Patch Locations
below).

Now the contents of LB are printed on the output
devices, the console is checked for any pending commands,
and the process is repeated until terminated by reaching the
last address or by a command from the console.

The symbol tables comprise two tables: an index table
and a label table. The index table is constructed during
execution of the 'B* command. It contains the hex value of
each 16 bit argument encountered in the address ranges that

A LITTLE INSIGHT Page 5

have been disassembled. It also contains flags which
indicate for each entry the presence of an assigned label,
the mode of the label (instruction mode or table mode), and
a pointer to the location of the assigned label in the
second (label)table. The ' K' command deletes entries from
the index. The 'M' command changes the flag which indicates
label mode. The ' F' command adds it's argument to the index
table if it is not already there.

The label table (assigned labels) is constructed during
execution of the 'L','S', or 'T' commands. When one of these
commands is given, the label specified in the command is
added to the label table. The index table is then searched
for the corresponding hex value (address of the label in the
object program) and a pointer is entered in the index table
that points to the label entry. If there is no corresponding
entry in the index table, then one is created. Thus, these
commands also act to build the index table. The * S' command
resets a flag to indicate that this label belongs to an
instruction. The 1 T1 command sets the flag to indicate that
this label belongs to a byte in a table of data. The 'L'
command leaves the mode flag unchanged.

A description of the flag and pointer words for the
symbol tables is included in the implementation section. If
you choose to store the tables (on tape or disc, for
example) for future use, then you must be sure to also
record these locations and restore them when you restore the
tables.

Mode, Mode Character, and Mode Control
The character immediately following the ' D* or ' B' in

those commands is .the mode character. Two modes are
possible: instruction mode and table mode. Table mode is
specified if the " mode character is a 'T' ; any other
specifies instruction mode. — - • . A

In the instruction r-mode, bytes from the object program
are interpreted as Z-80 and 8080 instructions. -- -

In the table mode, bytes from the object program are
interpreted as single-byte constants which are part of a
table of data. • - .

There are two flags associated with mode control. The
mode control flag is set (or reset) by the mode control
character when the ' D' or ' B' command is issued to REVAS.
The second flag, the mode bit, is part of the data stored
for each entry in the index table. The mode bit is set or
reset during execution of the 'B','M','S',and * T* commands.
The function of the ' M' command is to define the state of

